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The investigation of vibrational instability of a plate in the flow of fluid and gas 
(panel flutter) is one of the basic problems of the theory of aero- and hydroelasticity [i, 
2]. Here we study the instability of the flexure of a flat panel surface, which is in the 
turbulent boundary layer of an incompressible flow. A simple model of this surface is ex- 
amined - a series of plates which are infinite in the direction transverse to the flow and 
which are hinged at the edges. The hydrodynamic part of the problem is solved in the "quasi- 
laminar" approximation, where the velocity profile of the average flow in the turbulent 
boundary layer is assigned to the laminar part of the flow. The thickness of the boundary 
layer is assumed constant along the series of plates. One type of vibrational instability 
is studied: the periodic flexure of the surface with different signs of the deviation of the 
adjacent plates. It is known that a region of reduced pressure is formed above a single pro- 
jection on a plane surface when there is potential flow around it and that the pressure is 
increased beyond it. Therefore one can assume that variable-sign flexure of theplates will 
be most typical of the shape of the flexure during steady-state vibrations of the series of 
plates. That bending shape was chosen in [3] in analyzing supersonic flutter of a periodi- 
cally fastened large panel (see also the review in [4]). 

The problem of the flutter of a series of plates is closely related to the known prob- 
lem of the stability of a uniform elastic surface with a plane parallel flow around it [5]. 
The most detailed study of the instability of flexure waves on such a surface was made for 
laminar flow above it (a Blasius boundary layer, Poiseuille flow, etc.) [5-7]. The problem 
of determining the response of the average flow in a turbulent boundary layer on the flexure 
of the surface in the form of a running wave was examined in [8]. However, in [8] an inter- 
polational representation of solutions to Rayleigh's equation was used, which does not allow 
reliable results to be obtained for the practically important case for "moderate" flexure 
wave numbers and arbitrary values of the phase velocity of the flexure harmonics. An anal- 
ogous problem for vibrations of a ship surface in an atmospheric boundary layer was solved 
on the basis of asymptotic theory [9-12]. 

Here the asymptotic theory of the stability of shear flows is also used for determining 
the response of the flow to the periodic flexures of a panel surface. Rayleigh,s equation 
is solved numerically for the profile of velocity perturbations in the boundary layer. 

i. Characteristic Equation for Vibrations with Periodic Sign Changes in the Flexure of 
the Plates. We now examine a series of identical plates (infinite in the direction perpen- 
dicular to the flow), each of length L. The edges of the plates are hinged tightly to each 
other. In the region y > 0, a plane parallel flow with a velocity profile ~(y) flows over 
the plates in the form of a boundary layer. In the region y < 0, the fluid is immobile. The 
density of the fluid is Pz and Pz in the regions y > 0 and y < 0, respectively. 

The equations of motion of a thin plate [I] are used to describe the one-dimensional 
flexure of the surface y = w(x, t) 

O~,v 04m ~ ,. 02w __ Ow 
y ~ -  + D ~-7~-. ~ o~-[7-t- 2r-T/" = P 2 -  Pl, ( 1 . 1 )  

where y is the mass per unit area of the plate surface; D = Eh3/[12(l - ~2)] is the plate 
bending rigidity (h is the plate thickness, E is Young's modulus, and U is Poisson's ratio); 
r is the phenomenological loss coefficient; N is the external compression; and Pi,2 is the 
pressure on the surface from the half spaces y > 0 and y < 0, respectively. 
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The boundary conditions for independent hinging of the plates on the lines x n = (n - 
I)/L -+ 0 (n is an integer) have the form [i] w = 0 and ~2w/~x2 = O. The displacement of the 
surface of each plate is represented as a Bubnov-Galerkin series: 

W =  ~,~ ~ o ~ ) ( t ) s i n [ s k o ( x - - x n ) [  ( x n < x < x n + 0  ( 1 . 2 )  
s=l,2. . .  

where k 0 = ~/L is the wave number of the main flexure mode, wn(S) is the amplitude of the 
s- th mode on the n-th plate .  Substituting (1.2) into (1.1) leads to the excitation equa- 
tions for the modal amplitudes: 

xnq- 1 

a"-,vf) -t- 2r + (Dk~s  a - -  NkXs w$ ) 2 ot 2 - S F  - -  -s j (P.,. - -  Pl)/sin. [sk o (x - -  xn)l dx. ( 1 . 3 )  
2r 

In order to close the system (1.3) it is necessary to relate PI,2 to the surface dis- 
placements. In the case of a linear medium, it is sufficient to know the response to ele- 
mentary flexures w ~ exp (ikx - i~t). If we use the superscript symbol A to denote the com- 
plex amplitudes of the variables, we can introduce the input complex elasticity (the hydro- 
elasticity) for the half spaces y > 0 and y < 0, respectively: 

k) = k) ( t  . 4 )  

where c = m/k is the phase velocity of the harmonic (m, k). We also can introduce the total 
complex elasticity of the medium Y = YI + Y2. In this representation, Y, which is real, 
positive, and independent of the frequency, denotes the presence of a "restoring force" from 
the side of the fluid. If Y ~ _m2 then the action of the fluid reduces to the effect of 
an attached mass. As opposed to the fluid "conductivity" [6] which is normally used in 
acoustics, the complex elasticity makes it possible to describe the response for static 
(m = 0) flexures of the surface. 

The case of a periodic one-dimensional flexure, where the surface vibrations can be 
described with the use of a single amplitude A(t): w~ l) = (-l)n+iA, w(x, t) = Asink0x , is 
the simplest for analysis and at the same time practically important (in view of the discus- 
sion above). It is the simplest of the possible forms for periodic flexure, because the 
flexure for a different relationship of the deflection amplitudes of neighboring plates 
leads to an infinite complex elasticity. If we assume A = A0 e-imt it is easy to convince 
oneself that the system (1.3) reduces to a single equation for A0, from which the character- 
istic equation is obtained in the form 

3,w2 + 2iro~ - -  (Dk~ -- Nk~) = ~ J (c. ko), ( i .  5 )  

where J = Y(c, k) + Y(c, -k). 

The functions Y(c, k) and J(c, k) are determined for real values of c as an analytic 
continuation from the integration contour in the inverse Laplace transform, which arises 
in solving the problem with a given initial flexure of the surface. This makes it possible 
hereafter to compute the function J for real c and k from the formula J = Y(c, k) + Y*(-c, k), 
by analytic continuation of the result in the region of complex c. 

An explicit expression for Y can easily be found in the case of one-dimensional potential 
flow around the surface: fi(y) = u~. A simple calculation gives 

r = - -  p l l k l ( c - - u ~ )  ~ -  p 2 1 k l c %  ( 1 . 6 )  

C o r r e s p o n d i n g l y ,  Eq. ( 1 . 5 )  t a k e s  t h e  f o r m  
- -  . 2 3  ?o me + 2it'~ - -  (Dk~  N k ~  - -  ?ikou ~ )  - -  O, ( 1 . 7  ) 

w h e r e  Y0 = ~ ~ u + Y2, and  u  = O 1 , 2 / k o  i s  t h e  a t t a c h e d  mass  p e r  u n i t  a r e a  f r o m  t h e  h a l f  
s p a c e s  y > 0 and y < 0 f o r  a g i v e n  t y p e  o f  v i b r a t i o n s .  

Hereafter we will consider only the case of stable zero deflection in the absence of 
flow: N < Dk~. By solving (1.7) it is possible to determine the critical flow velocity U~c, 
above which static surface instability (divergence [2]) occurs: U~c = m0/k0 ~4-~-z, where ax = 
Y1/~0 and m0 = [(Dk~ - Nk~)/u I/2 is the intrinsic frequency of loss-free vibration of the 
series of plates for u~ = 0. For u~ < U~c, the surface vibrations either are neutrally 
stable in the absence of losses (r = 0) or else attenuate for r > 0. 
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2. Complex Flow Elasticity in the Turbulent Boundary Layer. In order to investigate 
the flexure stability of the surface in the turbulent boundary layer, it is necessary to find 
the complex elasticity of the flow Y1(c, k). The profile of the average velocity in the tur- 
bulent boundary layer has a universal logarithmic section [13] 

u +=!Iny +~B. (2.1) • 

Here y+ = yu,/v; u + = u-/u,, where u, is the dynamic velocity; ~= 0.4; and B is a constant 
(B = 5.0 for a hydraulically smooth surface). Equation (2.1) is valid in the region 6~ < 
y+ < 0.156 + , where 6 + = u,6/v and 8~ = U,6L/~ are the dimensionless analogs to the thickness 
of the boundary 6 and the buffer region next to the wall 6L, which usually is taken as 6 L = 
30 [14]. The running distance from the wall y+ is a characteristic scale of the profile 
(2.1). The function (2.1) vanishes near the wall where the velocity profile tends to become 
linear (u + § y+) and also in the "wake" region y+ > 0.156 + , where the deviation of u + from 
(2.1) can be estimated by adding a small correction term [15]. The appendix gives an analytic 
approximation for the total velocity profile in the turbulent boundary layer [see (A.4)], 
which is close to one of the known implicit approximations [16]. Figure 1 shows the profiles 
of the second derivative computed from Eq. (A.4) (solid line) and for the approximation [16] 
(dashed line). Use of the explicit representation for the velocity profile (A.4) substantially 
simplifies the numerical solution of Rayleigh's equation, which contains a singular point. If 
the Reynolds number R = u~6/v is given as the initial parameter, it is possible to compute 
6 + and u,/u~ (see Table i). 

In order to apply the asymptotic theory we go to dimensionless quantities and choose 6 
and u~ as the scales for length and velocity. We denote the dimensionless quantities by their 

~ -- U 2 dimensional analogs with a subscript e: k e kS, Oe oS/u~, e e ~ c/u~, pl.2e -- Pl.2/Pl.2 ~, Yi.2e = 
2 

Yi.26/p1.~u~ etc. The transition from variables with a superscript + to those with a subscript 
e is determined by the equations 

Ye = g + / 6 + ,  ue ~ u + ( u , / u ~ ) ,  8 + = B ( u , / u ~ ) .  ( 2 . 2 )  

Hereafter the index e is omitted for brevity. 

We denote the complex profile of the y component of the velocity by ~, which satisfies 
the Orr-Sommerfeld equation. In the asymptotic theory, ~ is represented as a sum of "in- 
viscous" viv and "viscous" ~V solutions [7]. The inviscous solution satisfies the Rayleigh 
equation 

V ~ v - -  k S + ~  i v ~ O  (2.3) 

where the primes denote differentiation with respect to y. Strictly speaking, the derivatives 
of viv deviates substantially from the desired solution in the neighborhood of the layer where 
Y = Yc, where fi(Yc) = c. However, the effect of the critical layer can be estimated by making 
a contour around the singularity in (2.3), As shown in [17], for ku~ > 0 [u c-' m~'(yc)], the 
contour around the singularity should be made in the lower half plane of the complex y plane. 
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An analytical continuation of the solution from the contour of integration of the inverse 
Laplace transform, when the problem is solved with initial conditions (see Sec. i) leads to 

same contour around the singularity. 

The boundary conditions on the undulating surface can be reduced to the level y = 0 by 
using the standard approach of expanding the solution in a series for small y. These condi- 
tions have the form v = 3w/at and v' = fi~3w/%x, where fi~ ~ fi'(0). Here it is assu~ed that 
the rise of the surface is small compared to the thickness of the buffer region 6L, which 
makes up a small part of 8 (6L ~ 0.016). Moreover, the rise should be small compared to the 
viscous scale e = (kfi~R) -I/a, which in the asymptotic theory is assumed small compared to 
6 L. The boundary conditions have been analyzed [7] with a description of the equations o f  
the problem in curvilinear coordinates which are bound to the distorted surface. Here it 
turns out that the Orr-Sommerfeld equation and the boundary conditions presented above re- 
main in force for a much weaker limitation on the rise of the surface: kw ~ i (the variables 
x, y, and 9 take on a different meaning in this case). 

The effect of the viscous solution vv, which arises from the sticking conditions at the 
wall, can be considered by specifying an effective boundary condition 9iV for y = 0 (in 
analogy to [18, 19]). For k > 0 and any real c, we obtain 

~ + ~ = - ~  (k, ~)($;~-  ~k~;~),  ( 2 . 4 )  

where z c = c/5~s is the coordinate where the layer coincides with the linear profile fi = fi~y 
in units of e, and D = -gV(0)/svr is the generalized Tietjens function. If the velocity 
profile is linearizedafter vv is found, then D(k, c) transforms to the Tietjens function 
in the Holstein definition of D(z c) [8, 20]. For z c > 4-5, it is possible to use the asymp- 
totic representation, according to which D § (i • i)//21Zcl when z c § i~ [20]. 

Because the phase velocity c is not assumed small hereafter, the results of [7] should 
be used, in which the problem of constructing the viscous solutions is solved by considering 
the curvature of the velocity profile. This makes it possible to Write the expression for the 
function D for c > 0 in the form 

1 a - ,  (c  - -  ~) l /~dy . b = VoD(o~.~), ~ = -7 _ T  ~o (2.5)  

For c < 0 it is possible to take o = i. The expression for o remains unchanged when it is 
replaced with variables with the superscript +. Figure 2 shows o as a function of c +, which 
was constructed for a logarithmic profile (2.1) extrapolated to infinity and corrected near 
the wall according to (A.4). The dashed line shows the asymptote for sufficiently large c + 

g = 7  

which  i s  found  by s u b s t i t u t i n g  t h e  f u n c t i o n  ( 2 . 1 )  f o r  a l l  y+ i n t o  ( 2 . 5 ) .  Because  o ~ t ,  t h e  
expression for D for large z c coincides with the asymptotic D(zc), but the transition to it 
occurs at smaller values of z c. 

Equation (2.3) should be augmented by the boundary condition [21] 

~;v + ~iv = 0 ly=1. ( 2.6 ) 

In order to calculate YI 
surface y = 0 [7]: 

it is also necessary to have an expression for the pressure on the 

p~ = -~ [ ~  (o) + Uo~  (o)]. (2.7) 

We denote by ~(g) the solution to the Rayleigh equation (2.3), which satisfies both the 
contour around the singularity shown above and the boundary condition (2.6). By substituting 

into (2.4) and by using (2.7), we obtain the desired expression for Yl 

- ,  , c - -  E u  o D  

Y1 (e, k) = [CqD' (0) -b uoq o (0)] qo (0)+ sD~p' (0)" 
(2.8)  
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We note that e in (2.8) is assumed to be rather small, and the viscous function D(k, c) is 
determined above only for k > 0. The transition to complex c in (2.8) is accomplished by 
analytically continuing Y1(c, k) as a function of real c. 

The fundamental solutions to the Rayleigh equation in the form of a Sommerfeld series 
in k 2 are well known [17]. They can be used to find a relatively simple explicit represen- 
tation for YI for small flexure wave numbers (see [6, 7] for example). In order to determine 
YI in the practically important case of moderate flexure wave numbers (k ~ i) we make use 
of a numerical solution of the Rayleigh equation, based on the approach in [22, 23]. In 
order to transform the passage around the contour to a form more convenient for a numerical so- 
lution, we represent the desired function ~(Y) in the form of a linear combination of Toll- 
mien functions ~a and ~b [23]: ~ = A• @ Bi~b(y), where the subscript • indicates constants 
for the regions y > Yc and y < Yc, respectively. Then the above contour curve takes the 
form [18] 

B+ = B _ ~ - B ,  A+-- A_= ia(~;/~;)B. (2.9) 

By assuming that the Wronskian of the pair of functions ,= and ~b is strictly equal to --i, 
we have A• = ~'~b' ~Tb, B• = ~--T'Ta. By integrating Eq. (2.3) with the condition (2.6) at 
the initial point y = i and by using an explicit expansion for ~, and ~b for y § Yc [23], we 
express A+ and B+ approximately in terms of ~ and ~ at the point y = Yc + A, where h is a 
small positive quantity. By then determining A_ and B_ with the aid of (2.9), we calculate 
the values of ~,and ~' which are required to continue the integration at the point y = Yc - A. 

By choosing 6 = 0.01-y c and by using the expansions for ~a and ~b which correspond to 
the first two and three terms as y + Yc, it is possible to obtain results which are almost 
independent of A. A controlled application of this method to the problem of wind instability 
gave results coincident with those in [9] (there another procedure was used to integrate 
around the singularity). 

The function D(zc) , which enters Eq. (2.8), has been tabulated in the region IZcl < 8 
with the aid of a numerical solution of the equation for vv with a subsequent integration. 
This gave results which coincide with the standard values [4, 20~. In the range ]Zcl > 8 
an asymptotic formula is used for z c + • 

Figure 3a shows the Re J1/k and Fig. 3b shows ImJl/k as functions of c for R = 8-104 
(curves i-4 correspond to k = 0.5, 1.0, 2.0, and 3.0). As k § 0, the function ReJ1(c, k) 
coincides with the complete function Jz(c, k) in the case of one-dimensional flow: J1 = 
-2k(l + c 2) [see also (1.6)]. The results calculated for 0 < k ~ 6 and the Reynolds number 
from tables make it possible to suggest a quasipotential model of flow around the vibrating 
surface, the essence of which is expressed by the approximation 

Re J~(c, k) = --2k (1 q- c2), ( 2 . 1 0 )  

where  1 ~ t  and depends  weak ly  on t h e  R ey n o ld s  number.  The d e p e n d e n c e  o f  f on k i s  a p p r o x -  
i m a t ed  well by the formula f = In (2.05)/in (2.05 + k). Thus, the drop of the flow velocity 
within the boundary layer leads to a decrease of the static component of the complex elastic- 
ity. 

The complex elasticity of the flow in the boundary layer has a small imaginary part, 
which determines the energy transfer between the flow and the vibrating surface; here the 
energy enters the surface for ImY I > 0 [7]. The presence of regions with ImJl > 0 in Fig. 
3b is caused by the action of a Miles mechanism for strengthening the resonance with the 
flow of flexure harmonics, whose phase velocities lie in the interval 0 < c < i. The har- 
monics which are not resonant with the flow give a negative contribution to ImJl, which is 
determined by the excitation of viscous perturbations near the wall (D ~ 0). Calculations 
show that the behavior of ImY1( ~, k) in the resonance region of the phase velocities almost 
unaffected by the replacement of D by D in (2.8). Moreover, the behavior ImY l is almost the 
same as for ideal flow (D ~ 0). This agrees with the known results of Miles theory for wind 
waves [Ii], because ImYl/k coincides with his interaction coefficient of the waves with the 
wind. According to Miles theory, we also find that this resonance is possible only for suf- 
ficiently short surface waves for moderate flexure wave numbers [12]. 

We note that a correct determination of Yl(c, k) requires the use of the approximate 
velocity profile which satisfies the condition 5'(1) = 0. If there is a jump in the first 
derivative at the boundary with the one-dimensional flow, corrections, which becomes small 
for 5'(1) ~ kll - cl, must be introduced into the boundary condition (2.6). For this reason 
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Re Jl did not converge to the limit of the potential flow for small k in the preliminary cal- 
nulations for the profile (A.4) with the parameter $ = 0. 

3. Resistive Instability of the Periodic Flexure of the Panel Surface. Within the 
framework of the quasipotential model (2.10), the critical divergence velocity is i//~ times 
higher than u~ c obtained in Sec. i. Because the frequency of the intrinsic surface vibrations 
becomes zero at the divergence threshold, the phase velocity of the flexure harmonics which 
accompany the flow drops off in the region with ImJz > 0 (see Fig. 3b), and the flow veloci- 
ties are less than the critical velocity. This leads to a subcritical resistive instability 
of the intrinsic vibrations. 

Along with YI in the characteristic equation (1.5), there is also a contribution from the 
complex elasticity of the layer y < 0, in which there is no average flow. If we set fi § 0 
and z c ~ 1 in the equations in Sec. 2 and restore the subscript e for the dimensionless quan- 
tities, we obtain 

J2e Y2e (ce, ke) + 2e ( - -  ce, ke) - -  2k~c; I + k . ~ ~ e(21%IR2),2 ' ( 3 . 1 )  

where R 2 = (v/v=)R, where v 2 is the kinematic viscosity of the fluid in the half space y < 0. 

We represent the total functions Ji,2e as the sum of i) their values in the case of po- 
tential (quasipotential) flow (around the plates) and 2) the small corrections Ji,2, which 
characterize the dissipative processes: 

J l .  = - -  2%(f  § c~) + ] I ,  72~=  - -  2k~c~ + ]2o ( 3 . 2 )  

I n  o r d e r  t o  s o l v e  ( 1 . 5 )  we i n t r o d u c e  new v a r i a b l e s  w i t h  a f r e q u e n c y  n o r m a l i z a t i o n  t h a t  d o e s  
n o t  d e p e n d  on t h e  f l o w  v e l o c i t y  a n d  w i t h  a f l o w  v e l o c i t y  n o r m a l i z a t i o n  i n  t e r m s  o f  t h e  p h a s e  
v e l o c i t y  o f  t h e  f l e x u r e  w a v e s :  

= ~I~o, V = U~kol~o,7 = rl?o~o. ( 3 . 3 )  

Their connection to the dimensionless variables of stability theory (Sec. 2) is determined 
by the expressions 

c e =~/V, R = VR o (3.4) 

where R 0 = ~05/k0v is the Reynolds number in terms of the phase velocity of the flexure 
waves. By using (1.5) and (3.2), we obtain a characteristic equation in the new variables: 

~ -~ 2i,:~ - -  (i - -  ~ J V  2) = --I 2 (V~/koD [~J~ (c~, k0e; R) § ~272 (c,, k0~; R)I ( 3 . 5 )  

w h e r e  (~2 = 7 2 / ~ 0 ) .  I n  t h e  a b s e n c e  o f  d i s s i p a t i v e  p r o c e s s e s ,  ( 3 . 5 )  g i v e s  v i b r a t i o n s  w i t h  a 

frequency ~ ( 0 )  = / 1  - a l f V  ~ w h i c h  i s  v a l i d  f o r  V < V c = 1 / / a l f ,  w h e r e  V c i s  t h e  d i m e n s i o n l e s s  
v e l o c i t y  o f  q u a s i p o t e n t i a l  d i v e r g e n c e .  We now s e e k  t h e  s o l u t i o n  o f  ( 3 . 5 )  f o r  ~ ( 0 )  ~ 1 w i t h  
t h e  a i d  o f  a p e r t u r b a t i o n  m e t h o d  f o r  s m a l l  J z , ~  a n d  ~ .  By c a l c u l a t i n g  t h e  f i r s t  c o r r e c t i o n  
t o  ~ ( 0 )  we h a v e  t h e  v i b r a t i o n  i n c r e m e n t  

i V ~ (~11mJ~" ~ a 2 I m J 2 ~ = ~ ( ~  ( 3 . 6 )  

When a "light" fluid flows over the surface (~z ~ u + ~2, al ~ i), the divergence threshold 
is Y c ~ i, and a resistive instability is possible even for V ~ V c. Here the situation is 
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analogous to the known solution for exciting water waves by wind. Later we will examine the 
flow of a "heavy" fluid over the surface (u ~ 7 + ~2 and ~i S I), where the resistive in- 
stability arises for values of V comparable to~V c. Moreover, in numerical calculations we 
limit ourselves to the case of i) identical fluids on both sides of the surface (u = u and 
~2 = v) and 2) a relatively small contribution to u from the intrinsic mass of the plates 
(~/2y1 ~ i), which makes it possible to assume ~1,2 ~ 1/2. 

The perturbation method is not valid in this form when ](0) + 0 (V + Vc). However, by 
using a linear approximation J1 = 80 + iBiCe for small values of c e (80 and $i are real coef- 
ficients), it can be shown that Eq. (3.6) can be used to estimate the increment even for v + 

v c . 

By specifying V and R, we can find Im~ for R 0 = R/V by using the graphical data in_Fig. 
3b. These data, however, are insufficient for constructing a continuous function of Imm vs V, 
because R varies simultaneously with V for a fixed R 0" Moreover, the thickness of the bound- 
ary layer, which enters into the determination of k0e and R, depends on V. The dependence of 

on u~ and V can be neglected. For example, for the power law 6 ~ ug I/s [21] a change in 
u~ by a factor of 1.5-2.5, which is characteristic for a region of subcritical instability, 
leads to a change in 6 by a factor of 1.1-1.2. Calculations show that the dependence of ImJle 
on R is we_ak if ImJle is positive and sufficiently large. This makes it possible to con- 
struct Imm as a function of V from the curves in Fig. 3b. 

Figure 4 shows the aerodynamic component of the increment F s [the term ~ImJ1e in (3.6)], 
which is constructed for ~i = 1/2 and R 0 = 8.104 in the subcritical region of V values (curves 
1-4 correspond to k0e = 0.5, 1.0, 2.0, and 3.0). The calculation includes the dependence of 

Im J1e on R. 

Estimates from the curves in Fig. 3b for the magnitude of ImJze, which determine the 
losses in the immobile fluid, give a value of ~2"i0 -s, which allows this contributuion in 
(3.6) to be neglected. The functions shown in Fig. 4 make it possible to estimate the level 
of losses in the plate material, which are necessary for suppressing the instability. By 
relating r to the Q for the vibrations of a free surface (in a vacuum) with this form of the 
flexure, Qf = Re ~f/2 Im ~f, where mf is the frequency of free vibrations, it is possible 
to write the condition for suppressing the instability in the form 

For example, if F s ~ 10 -2 and Y/Y0 ~ 0.2, we obtain from (3.7) that the instability vanishes 

for Qf < 23. 

Thus, the increment in the instability of a periodic sign-varying flexure in a series of 
plates can be expressed in terms of the complex elasticity of the flow for two harmonics of 
this flexure. For moderate flexure wave numbers, a quasipotential flow is realized over the 
surface, which leads to an increase in the critical divergence velocity compared to the case 
of one-dimensional flow. The resonance interaction of the surface vibrations with the flow 
in the critical layer (the Miles mechanism) determines the occurrence of a resistive insta- 
bility of the surface at velocities lower than the critical velocity. Here we have found the 
condition for suppressing the resistive instability due to the losses in the plate material. 
We add that determining the boundaries for applying the single-mode model is approximately 
related to the analysis of the double-mode for periodic flexure with a period 2L. It can be 
shown that, for a homogeneous flow, the effect of the second mode is small for u~ < 1.5u= c. 
Here the resonance mechanism for building up the second flexure mode of the plate is also 
insignificant, in view of the large phase velocity of the surface flexure harmonics which 
are produced by it. 
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Appendix. Several approximations are known for the velocity profile in a turbulent 
boundary layer [13-16]. However, almost all of them start from an explicit representation 
for the first derivative of the profile at the wall. The same velocity profile should be 
determined numerically. The explicit Reichardt approximation ([13], p. 547) does not satisfy 
the condition that the third derivative must be zero at the wall; it gives a deviation of 
~25% from the linear law at the boundary of the viscous sublayer y+ = 5. The implicit ap- 
proximation [16] 

8 10-4Y+2)]}-1 (A.1) 
dy + 

g i v e s  an ana logous  d e v i a t i o n  of  N8%, which to  a l a r g e r  degree  c o r r e s p o n d s  to  e x p e r i m e n t a l  
d a t a .  Here we p r e s e n t  an e x p l i c i t  app rox ima t ion  o f  t h e  v e l o c i t y  p r o f i l e ,  which i s  c l o s e  to  
(A.I). 

For y+ ~ 6 +, we write the following expression for the derivative of u+: 

du + _ t + • -~+  + bg+2e-Xl~+ (A.2) 
dg + i ~ • 

where b, X, and hi  a re  p a r a m e t e r s .  For y+ § ~, (A.2) approaches  Eq. ( 2 . 1 ) ,  and B=(• 
(2b/%~) q-il/•215 It follows from (A.2) that du+/dy + = 1 and d2u+/dy +2 = 0 at y+ = 0. Then 
by applying the condition that dau+/dy +a = 0 at y+ = 0, we can express X l and b in terms of 
X and B: 

b = •215 = [2b/( B - x / ~ 2 - 1 n  ~/~)11/3 (A.3) 

The results of constructing the second derivative of the velocity profile for X = 0.2285 and 
B = 5.0 are shown in Fig. i. 

The additive correction term to (2.1) in the wake region is written in Coles' form [14, 
15]. As a result, we obtain an approximation for the total velocity profile (0 < y+ < 6+): 

q = • e-zy+ +-~ �9 For a boundary layer with no pressure gra- Here 

dient, h m = 3.1 [15]. As oppposed to [15], the correction term in (A.4) is shown in a shifted 
form. The introduction of the parameter ~ makes it possible to fulfill the condition of a 
zero first derivative of u + at the boundary with the one-dimensional flow y+ = 6 + (see Sec. 
2). If h m = 3.1, this condition gives ~ = 0.1476. 
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MODELING SEPARATION BOUNDARIES IN THE FLOW OF A HEAVY FLUID OVER 

A WING PROFILE 

M. V. Lotfullin and S. I. Filippov UDC 532.5 

The presence of boundaries separating media has a substantial effect on the nature of 
the flow around a wing and the forces acting on it. In the plane case the separation bound- 
ary is a flow curve, where velocity undergoes a tangential jump when it passes through it, so 
a piecewise analytic functionwith an unknown curve of discontinuity in the region of the flow 
must be sought in order to construct a complex flow potential. If the [wing] contour is suf- 
ficiently far from the separation boundaries, modeling the separation lines by continuously 
distributed singularities within the framework of the theory of low-amplitude waves makes 
it possible to solve a wide circle of problems [1-4], in which the conditions on the contour 
are fulfilled exactly. 

Here the method of distribution of singularities is used to solve problem in which a 
two-layered heavy fluid with a free surface flows around a profile located in the layer of 
the fluid. This problem is related to the "dead wave" phenomena [5], which is caused by the 
formation of waves on the boundary separating fluids of different density. We make note of 
[6], where an attempt was made to solve the problem by the method in [7]. However, the in- 
vestigation in [6] was limited by the choice of an integral equation; only a contour of con- 
tinuous curvature was studied; and the problem of defining the circulation was not treated. 

i. In a system of coordinates bound to the [wing] profile C, we examine a steady-state 
flow of an ideal incompressible heavy fluid, which is limited by a free surface E l and con- 
sists of a layer of thickness H of density Pl and an infinitely thick layer of density P2 
with a,boundary E 2 separating the fluids. The Ox axis is directed against the flow; the Oy 
axis is vertical upwards, and the origin of the coordinates lies in the middle of the chord 
of C. The flow velocity at infinity ahead of the profile is parallel to the immobile separa- 
tion boundary and is equal to -Vj (j = i, 2). 

In the representation of a potential flow, the problem reduces to determining the com- 
plex potentials of the perturbed flow W~(z) in the corresponding regions Dj, where D~ represents 
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